
Gradiance On-Line Accelerated Learning Guide for Authors

Je�rey D. Ullman

Gradiance Corp.

Abstract

Gradiance On-Line Accelerated Learning (GOAL) is a system for creating and automatically
grading homeworks, programming laboratories, and tests. Through the concept of \root ques-
tions," Gradiance encourages students to solve complete problems, even though the homework
appears to be in a multiple-choice format. This document contains advice about how to design
e�ective root questions. The mechanics of entering questions into the Gradiance system are
found in the companion \Instructor's Guide."
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1 What is a Root Question?

A root question looks to the student like a multiple-choice question, but there is much more behind
the scenes. As discussed in the instructor's guide (www.gradiance.com/pub/inst-guide.pdf),
root questions ask the student to solve a conventional problem but then tests their knowledge by
asking them to identify a piece of the correct solution from among four random choices. We ask
students to solve a group of problems together and invite them to keep trying the work until they
get a perfect score. When a student is able to answer correctly a multiple-choice question about
every one of the problems in a group of 5 or so, we can be reasonably con�dent that the student
really has mastered these problems.

To further turn the homework into a learning, rather than testing, process root questions
generally have \choice explanations" (CE's) associated with each incorrect choice. The CE is
shown to the student whenever they make that choice and o�ers some advice about how to solve
the problem. We discuss e�ective CE's in Section 2.2.

1.1 Components of a Root Question

A root question requires the following components:

1. The stem | the statement of the problem.

2. The solution. This explanation is shown to the student after the homework due-date has
passed and corresponds to a solution sheet that might be distributed after a conventional
homework is �nished.

3. Some number of correct choices. This number may vary, but we recommend 3-5. Remember
that the Gradiance system will choose one of these at random, along with three random
incorrect choices, and present the four choices to the student in random order.

4. Some number of incorrect choices. There should be approximately three times as many
incorrect choices as correct choices, so it is not too easy for a student, trying the same
homework several times, to notice the di�erent frequency of correct and incorrect answers.1

In practice, it is safe to deviate signi�cantly from the 1:3 ratio.

5. Choice explanations. You have the option of adding choice explanations for any choice, but
it is important to add CE's for at least the incorrect choices. When a question is phrased in
the negative (\which of the following is not a gizmo?") then it may make sense to provide
CE's for the correct choices, explaining why they are not gizmos.

2 Root-Question Design

The most important point to remember when designing root questions is that you are really creating
a very conventional \analytic" question, where the student is asked to solve some problem in Math,
Science, or Engineering. Your stem asks the students to solve the problem. However, instead
of having them write down their solution and submitting it on the due date to be graded and

1Interestingly, even if there are exactly three times as many incorrect answers as correct, a student who keeps track
of co-occurrence of answers over many iterations of the homework can discover the correct answers. However, this
possibility is too remote to worry about. Gradiance limits the frequency with which a student can open a homework
to avoid gathering of meaningful statistics by the student.
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returned a week after that, you will ask them to answer a random multiple-choice question about
their solution and give them immediate feedback. Thus, you need to identify components of the
correct solution that the student can identify if they have solved the problem correctly.

We are going to work through a typical example, using integral calculus as the domain. Our
goal is to make sure that students understand the rule for integrating polynomials, i.e.,

R
xn =

xn+1=(n+ 1). A conventional problem would be something like:

What is the inde�nite integral of 20x4 + 12x3 + 30x2?

To turn this question into a root question, we need to observe that there are three terms to this
polynomial, so there are three natural components that lead to three correct choices. If we wanted
more choices, we could add more terms to the polynomial. Thus, we can phrase the root question
as:

Compute the inde�nite integral of 20x4 + 12x3 + 30x2. Then, identify one of the terms
in the integral from the list below.

2.1 Choices

There are three correct choices in this example: 4x5, 3x4, and 10x3. We should now develop
approximately nine incorrect choices. One approach is to think of the common mistakes that a
student might make, and make those be incorrect choices, coupled with a CE that addresses the
assumed mistake. In our example, one common mistake is to forget to divide by n+1. This mistake
leads to incorrect choices 20x5, 12x4, and 30x3. Another possible mistake is to divide by n instead
of n + 1. Thus, we might choose 5x5, 4x4, and 15x3 as incorrect choices. We could proceed by
theorizing about other possible errors, or just add some random, plausible looking incorrect choices
such as 3x3, 60x, 80x5, and 6x3. We now have three correct and 10 incorrect choices, a reasonable
combination.

2.2 Choice Explanations

In general, a CE should do at least one of the following:

1. Explain why the choice is incorrect. Ideally, the reasoning used to explain the error also hints
at the general methodology for solving the problem, by taking the student through the key
steps.

2. Outline a solution to the problem. In this case, the CE for each choice is the same. A variant
is to break the outline into a series of hints. Attach one hint to each incorrect choice. If the
student gets the same question wrong many times, he or she will accumulate a progressively
larger collection of hints.

If the question is designed for a particular textbook, we could even add a citation of a place to read
in the text.

2.3 Example: The Integration Problem

For the incorrect choices that were designed to detect speci�c mistakes, the natural CE will point
out that mistake. For example, the CE associated with the incorrect choices 20x5, 12x4, and 30x3

might say:
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The correct rule for integrating polynomials requires that we divide the term by a
constant. Do you remember how that constant is determined?

For the incorrect choices 5x5, 4x4, and 15x3 we might say something similar:

The correct rule for integrating polynomials requires that we divide the term by a
constant. However, you may have chosen the wrong constant.

These CE's simply try to jog the memory of students who may understand the idea but are
careless. Since students may be lost, we might choose to attach to the remaining four incorrect
choices a more explicit piece of advice: the general solution to the problem. For example:

In order to integrate a polynomial, we integrate each term and sum the results. The
rule for integrating a term is

R
axn = axn+1=(n+ 1).

2.4 Another Example: Understanding a Finite-State Machine

Let us consider a problem that might appear in a logic-design course in EE or an automata course
in CS: understanding what a simple �nite-state machine (FSM) does. The FSM has two states, A
and B; A is both the start and accepting state. It has the following transition table:

0 1

A A B
B B A

If you are familiar with state machines, you can notice that the machine stays in the same state on
0 inputs (i.e., it ignores 0's) and switches state whenever it sees a 1. It is thus counting the number
of 1's it sees, and accepting whenever that number is even. A standard phrasing of the question
would be:

Give a simple English statement describing what the FSM above does.

To make it a root question, we need to dissect the answer to the above question into atoms;
in this case the \atoms" are the individual input strings that the FSM might or might not accept.
That is:

Examine the FSM above, and determine what it does. Demonstrate your understanding
by identifying, from the list below, the string that this FSM accepts.

Then, we can choose as correct answers any string of 0's and 1's with an even number of 1's, e.g.,
010011010101. We can also choose as incorrect answers any strings with an odd number of 1's, e.g.
01001101001.

If the student has �gured out what the FSM does, then they can easily scan any four choices
to �nd the one with an even number of 1's. If they have not �gured it out, but have patience,
they can simulate the FSM on each of the four strings. But that becomes painful, since they may
have to work the problem several times (because they need to repeat other questions in the same
homework if they have made any mistakes), so they have an incentive to solve the problem.

We also encourage the student to solve the complete problem by our choice of CE's. A basic
CE would show why a choice is wrong by simulating the FSM. For instance, if 010 were a choice,
we might say:
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On input 010, the FSM makes the following transitions: A �0! A �1! B �0! B.
As a result, it winds up in state B and does not accept.

In addition to reminding the student of what acceptance means, and how a FSM processes input,
it convinces the student that the answer is wrong.

However, we can use, in addition to or in place of this kind of argument, a hint about the overall
working of the FSM . These hints can appear with all incorrect choices, or perhaps scattered around
the choices, so the more times a student gets the question wrong, the more hints they are likely to
have at their disposal. Examples of hints are:

Notice that the FSM changes state whenever the input is 1 and stays in the same state
whenever the input is 0.

Consider what the FSM does on the following inputs: 0000, 1001, 0110, and 1111. Do
you notice a pattern?

Hint: the FSM is, in a sense, counting 1's.

3 Problematic Areas for Designing Root Questions

We shall now take up some techniques for using root questions in arenas to which they seem hard
to adapt:

1. Application of formulas.

2. Algebraic rules and transformations.

3. Proofs.

3.1 Formula-Application Questions

We probably remember the following sort of calculus problem:

A farmer has 100 yards of fence, and wants to create a rectangular cow pasture against
a river, so only three sides need to be fenced. What is the largest area the pasture may
have?

The answer is 1250 square yards.2 The question seems to be a good multiple-choice question, but
not a good root question. There are several systems that allow the instructor to parametrize the
problem, as:

A farmer has Y yards of fence, and wants to create a rectangular cow pasture against
a river, so only three sides need to be fenced. What is the largest area the pasture may
have?

2If x is the length of the side opposite the river, then the area is x(100� x)=2. This function has its maximum at
x = 50, as you can tell by taking the derivative.
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These systems present the question to the student with a random value of Y , and apply the formula
Amax = Y 2=8 to check the student's answer. That is an elegant way to handle this sort of problem,
although it is limited to questions where the answer is an arithmetic function of parameters, and
thus applies to only a minority of the possbile types of questions we might want to create. However,
if you need a question of this type in root-question form, it is su�cient to put the parameter in the
choices. Thus, we would phrase the question as:

A farmer has Y yards of fence, and wants to create a rectangular cow pasture against a
river, so only three sides need to be fenced. Develop the formula, in terms of Y , for the
largest area the pasture may have. Demonstrate your understanding by indentifying,
from the list below, a pair (Y;A), where A is the maximum pasture area for a fence of
length Y .

We would then create correct answers like (100; 1250), (200; 5000), and so on. Incorrect answers
could be any (Y;A) such that A 6= Y 2=8. To make it slightly easier on the student, use the same
values of Y in the incorrect choices as appear in the correct choices.

3.2 Algebra

In several interesting domains we would like to use questions that involve transforming expressions
or determining whether a proposed equality is in fact an equivalence. For example, to teach matrix
algebra, we might ask students to determine the truth or falsehood of equations such as (AT )T =A

(true) or AB = BA (false). Our �rst attempt at a root question would be to ask:

Which of the following equations is true?

or perhaps

Which of the following equations is false?

Either way, the student will be presented with new equations to work out each time they open the
homework; that situation is hard on students, as discussed in Section 2.4.

A better approach is to limit the scope of the problem by giving the student a �xed set of
expressions to consider. Ask them to discover all equivalences, and identify from a list of four the
pair of equivalent expressions. Here is a simple example:

Let A and B be n�n square matrices and let I be the n�n identity matrix. Consider
the following matrix expressions: (a) (AB)T (b) A(I+BT ) (c) ATBT (d) A+ABT

(e) BTAT (f) ABT + IA. Determine which pairs of expressions are equivalent, and
select from the list below the equivalent pair.

You will notice that b = d = f and a = e, but there are no other equivalences. Thus, there are four
correct answers and six incorrect answers | not an ideal ratio, but good enough. This question is
a good one to put CE's on all choices, correct and incorrect. Correct choices can have a proof of
equivalence, and incorrect choices can o�er a counterexample.
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3.3 Proofs

Proofs are hard to turn into any sort of mechanically graded question. One technique with which
we've had some success is to o�er students an outline of a proof and ask them to identify the
reason for each step. The theory is that if they can supply reasons, then they probably understand
the proof, even if they couldn't come up with it themselves. For instance, we can ask students
to distinguish among uses of the inductive hypothesis, and uses of various de�nitions of concepts
involved in the proof. We shall illustrate the idea with the set-up actually used for several questions
involving context free grammars.

Let G be the grammar:

S ! SS j (S) j �

L(G) is the language BP of all strings of balanced parentheses, that is, those strings that could
appear in a well-formed arithmetic expression. We want to prove that L(G) = BP , which requires
two inductive proofs:

1. If w is in L(G), then w is in BP.

2. If w is in BP, then w is in L(G).

We shall here prove only (1). You will see below a sequence of steps in the proof, each with a
reason left out. These reasons belong to one of three classes:

A) Use of the inductive hypothesis.

B) Reasoning about properties of grammars, e.g., that every derivation has at least one step.

C) Reasoning about properties of strings, e.g., that every string is longer than any of its proper
substrings.

The proof is an induction on the number of steps in the derivation of w. You should decide on
the reason for each step in the proof below, and then identify from the available choices a correct
pair consisting of a step and a kind of reason (A, B, or C).

Basis: One step.

(1) The only 1-step derivation of a terminal string is S ) � because

(2) � is in BP because

Induction: An n-step derivation for some n > 1.

(3) The derivation S )n w is either of the form
(a) S ) SS )n�1 w or of the form
(b) S ) (S))n�1 w

because

Case (a):

(4) w = xy, for some strings x and y such that S )p x and S )q y, where p < n and q < n because

(5) x is in BP because

(6) y is in BP because
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(7) w is in BP because

Case (b):

(8) w = (z) for some string z such that S )n�1 z because

(9) z is in BP because

(10) w is in BP because

One form of question is to simply ask for those steps that use the inductive hypothesis. The
correct answers are (5), (6), and (9); the other seven choices are incorrect. Another form is to ask
for correct pairs of a step and a reason (A, B, or C). Then, choices such as (5; A), (3; B), or (2; C)
are correct; choices such as (5; B) or (5; C) are incorrect. There are 10 correct and 20 incorrect
answers; we don't have to use all of them, of course.
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